Neural-network-based motor rolling bearing fault diagnosis

نویسندگان

  • Bo Li
  • Mo-Yuen Chow
  • Yodyium Tipsuwan
  • James C. Hung
چکیده

Motor systems are very important in modern society. They convert almost 60% of the electricity produced in the U.S. into other forms of energy to provide power to other equipment. In the performance of all motor systems, bearings play an important role. Many problems arising in motor operations are linked to bearing faults. In many cases, the accuracy of the instruments and devices used to monitor and control the motor system is highly dependent on the dynamic performance of the motor bearings. Thus, fault diagnosis of a motor system is inseparably related to the diagnosis of the bearing assembly. In this paper, bearing vibration frequency features are discussed for motor bearing fault diagnosis. This paper then presents an approach for motor rolling bearing fault diagnosis using neural networks and time/frequency-domain bearing vibration analysis. Vibration simulation is used to assist in the design of various motor rolling bearing fault diagnosis strategies. Both simulation and real-world testing results obtained indicate that neural networks can be effective agents in the diagnosis of various motor bearing faults through the measurement and interpretation of motor bearing vibration signatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Extension Neural Network Learning Algorithms and Models and their Applications in Fault Diagnosis of Rolling Bearing

Extension neural network is a new type of neural network that combines extension theory and artificial neural network. Extension neural network has been applied to pattern recognition, fault diagnosis and clustering. According to fault characteristics of rolling bearing, we propose a fault diagnostic method for rolling bearing based on extension neural network. We construct the fault diagnosis ...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Wire Finishing Mill Rolling Bearing Fault Diagnosis Based on Feature Extraction and BP Neural Network

Rolling bearing is main part of rotary machine. It is frail section of rotary machine. Its running status affects entire mechanical equipment system performance directly. Vibration acceleration signals of the third finishing mill of Anshan Steel and Iron Group wire plant were collected in this paper. Fourier analysis, power spectrum analysis and wavelet transform were made on collected signals....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Industrial Electronics

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2000